
CIRCUIT CELLAR INK OCTOBER 199848

Jim Brady

Networking with DeviceNet
Part 2: A Weather-Station Application

If you like programming as much as I do,
you�re in for a real treat with DeviceNet.
The DeviceNet specification is fully object-
oriented, with each object described in
terms of attributes and services.

These items correspond to C++ class
data and member functions, so if you use
C++, all you have to do is understand the
specification and translate it to code. Just
make sure you have some strong coffee on
hand when tackling the tricky parts. I had
the most trouble�err�fun�with connec-
tion states and fragmented messaging.

Let�s cover the PC/104 hardware first.
After surveying the many processor boards
available for PC/104, I went with the
Micro/sys SBC1386, a 25-MHz �386EX
board, shown in Photo 1. It comes with
BIOS and a DOS run-time environment
that runs the application out of RAM. That
way, you don�t need a special library and
linker to generate ROMable code.

The board also includes the Borland
remote debugger in flash memory. It�s
nice to be able to send the program to the
board at 115 kbps, set some breakpoints,
and let �er rip. My program is written
entirely in C++ using the Borland compiler
(large memory model).

A lot�s been said about the poor suit-
ability of C++ for real-time embedded
development. But, it�s more than adequate
for a fast-response DeviceNet interface.

The program weighs in at 45 KB of
code space, including the weather-station
application code. This size is comparable
to DeviceNet interfaces I�ve done using
standard C with small CPUs. I�ll show you
some performance measurements later on.

CAN CHIPS
The next order of business is picking a

CAN controller. Table 1 compares periph-
eral-type CAN controllers. I went with the

Intel 82527 because I like having indi-
vidual mailboxes for each message type
rather than one big FIFO for all of them.
It�s more modular.

The Siemens parts also work this way.
They have 15 or 16 mailboxes�plenty for
the DeviceNet predefined connection set,
which has 10 connections.

A FIFO is good if you�re concerned
with the master beating your door down
with high message rates. But at some point,
your code will run out of steam anyway.

The 82527 has five operating modes.
Only mode 3 (nonmultiplexed asynchro-
nous) makes sense for a PC/104 inter-
face. I�d prefer faster 16-bit transfers, but
the 82527 in mode 3 is limited to 8 bits.

The PC/104 bus has the same timing
as the ISA bus, and it takes a whopping
720 ns for an 8-bit read or write. This
glacial pace is actually good because it
doesn�t exceed the rather long cycle and

Think programming a DeviceNet interface in C++ is tough? Jim disagrees.
With its excellent response times and adequate program size, Jim gets the same
excitement writing code for a fast 32-bit CPU as he got from his �67 Camaro.

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

E
P
C

 OCTOBER 1998 EMBEDDEDPC 49

access times of the 82527.
In mode 3, at maximum clock rate, the

82527 has a 288-ns access time. If you
use a fast bus, you need to accommodate
this slow interface. Intel�s web site has
app notes for interfacing the 82527 to a
various processors.

I use a PAL to generate the R/W select
line and the chip selects. To make sure the
R/W line remains stable at the end of a
bus cycle, the line is latched by an RS latch
in the PAL.

MEMR sets the latch and MEMW resets
it. The PAL design source file is available
via the Circuit Cellar web site. The only
glue logic is a couple of inverters to
delay the 82527 chip select to make
sure it doesn�t go low until after R/W
is valid.

With no video board in my PC/
104 stack, there�s plenty of memory
space for the CAN controller�s 256
bytes. I went with A0000.

In mode 3, the 82527 provides
one I/O port. To get enough I/O for all
my switches and LEDs, I added an
82C55A at memory address A1000.
That gave me plenty of I/O lines, includ-
ing enough for a four-wire serial inter-
face to the ADC on my weather-station
board.

CHIP SETUP
The 82527 has 15 mailboxes for

CAN messages, each with 15 registers.
Setting up a mailbox requires telling it
what its message identifier is and if it

is send or receive. Done properly, your
program only gets an interrupt for a
message directed to your device.

The 82527 also has a group of regis-
ters that control message filtering, inter-
rupt masking, data rate, and sample
timing. There are some tricky ones that set
the sample point within a bit time as well
as the limit on how much that sample point
can jump around.

There is a tradeoff�you want to let it
jump as much as possible to accommo-
date oscillator tolerance, and you also
want the sample point to be close to the
end of the bit time to accommodate long
cables. But you can�t allow it to jump so
much that it goes past the end of a bit time.

After a lot of calculation, I ended up
sampling at 87% of the way through a bit
time, with the jump limit (SJW) equal to
12% of a bit time. That accommodated
the worst-case cable length, with a jump
width still large enough to handle crystal
errors of about ±0.2%, which is plenty for
any crystal. The Intel 82527 Architectural
Overview provides information for this
calculation.

REAL TIME
I can�t help but be excited about writing

code for a fast 32-bit CPU after designing
8-bit systems for years. The feeling of
power is like the feeling I got from my first
car, a �67 Camaro with a 327 engine.

To make sure the 18.2-Hz BIOS clock
interrupt wouldn�t hurt me, I measured its

duration by looking at
how big a chunk it took
out of a tight loop that pulsed
an I/O pin. According to my
scope, it is just 56 µs, including the
time it takes to run my own timer
interrupt at INT 1C, which is chained to
the BIOS clock interrupt. I use this timer to
update my DeviceNet connection timers.

When a DeviceNet message arrives,
the 82527 pulls IRQ5 high. According to
Intel, the �386EX has a worst-case inter-
rupt latency of 63 clock cycles, or ~2.5 µs
at 25 MHz, neglecting wait states.

So, my DeviceNet interrupt handler
has to wait for a maximum of 58.5 µs (i.e.,
56 + 2.5) before it runs. This situation
happens when a DeviceNet message
comes in just after a BIOS clock tick.

The DeviceNet interrupt handler in
Listing 1 reads the message-length byte to
find out how long the message is and then
reads only the data bytes it needs to. Most
DeviceNet messages are well under
8 bytes. The most frequent message, the
I/O Poll Request, has no data bytes at all!

By the way, check the disassembled
machine instructions with your debugger
to make sure functions like peekb() are
getting expanded inline. Depending on
compiler settings, they may not be. For an
8-byte message, the duration of my
DeviceNet interrupt handler is 100 µs
with peekb() inline or 160 µs otherwise.

These timing measurements show
there�s still plenty of time left for process-

Photo 1—The PC/104 weather station is en-
tirely powered from the DeviceNet bus. The
weather station board is sandwiched be-
tween the ’386EX CPU board on bottom and
the DeviceNet interface on top. The humidity
transducer and thermistor are on the small
board in front.

Intel Philips Siemens Siemens
82527 SJA1000 SAE 81C90 SAE 81C91

Package PLCC 44 DIP 28 PLCC 44 PLCC 28
QFP 44 SO 28

Parallel CPU 8-bit multiplexed 8-bit 8-bit 8-bit
Interface 8-bit nonmultiplexed multiplexed multiplexed multiplexed

16-bit multiplexed
Access time 288 ns 45 ns 120 ns 120 ns
Serial Interface SPI, 8 MHz None 4 wire, 5 MHz 4 wire, 5 MHz
I/O Ports 1 or 2 eight-bit ports None 2 eight-bit ports None
Organization 15 mailboxes; 64-byte FIFO 16 mailboxes 16 mailboxes

1 is double-buffered
Identifier mask 1 global for mailboxes 1 global None None
 registers 1–14, and 1 special

for mailbox 15
Identifier match 1 per mailbox 1 global 1 per mailbox 1 per mailbox
 registers
Message timestamp No No Yes Yes
Max. DC current 50 mA 15 mA 30 mA 30 mA
Approx. price $7.50 $7.30 $6 $5.30

Table 1—Now you can compare various peripheral-type CAN controllers. The Philips device stores all
messages in a FIFO, while other devices store messages in mailboxes based on their identifier.

E
P
C

CIRCUIT CELLAR INK OCTOBER 1998 www.circuitcellar.com50

ing messages.
DeviceNet recommends

a response time of 1 ms for
I/O Poll messages and 50 ms

for Explicit messages. These mea-
surements also show that a faster PC/

104 bus wouldn�t help much. Out of the
100-µs total time for the interrupt handler,
only about 6 µs (eight bytes at 720 ns per
bus cycle) is spent doing bus transfers.

If your CPU is slow, an easy way to get
the 1-ms response time for I/O Poll mes-
sages is to put the data you want to send
in the CAN chip�s mailbox ahead of time,
ready to go. When an I/O Poll request
comes in, immediately tell the CAN con-
troller to send it. With this strategy, I
measured the weather station�s I/O Poll
response time at a worst case of 140 µs.

I later changed the code to be consis-
tent with my priority-based event handler,
which runs in the main loop. My DeviceNet
interrupt handler puts the message into a
buffer, sets a bit in a 16-bit event-word to
indicate a message is in, and exits.

The bit�s position within the event-word
determines its priority. When the main loop
detects this bit and no higher priority bits
exist, it calls the link consumer to consume
the message, gets the data from the Assembly
Object, and calls the link producer to
produce the message. This orderly ap-
proach lengthens the I/O Poll response
time to 340 µs, which is still plenty good.

MESSAGE FLOW
Figure 1 shows message routes in the

system. Explicit and I/O Poll messages come
in through their respective mailboxes. Explicit
messages are routed via the path specified
in the message and can access almost any
object in the device. I/O Poll messages
grab preselected data from a buffer in the
Assembly object and quickly send it.

The weather-station sends three bytes�
device status, temperature, and humidity.
I can send more data by adding it to the
existing assembly or creating a second
assembly. The device manufacturer deter-
mines which data goes into the assemblies.

At the top of Figure 1 is the unconnected
port, which the master uses to allocate the
connections it wants to use. Technically,
connections don�t exist prior to allocation.

This situation implies using C++ dynamic
allocation. Although you can do this, I
chose to create static objects at the begin-
ning of main() and use the constructor to

set the initial connection state to nonexistent.

CONNECTIONS
Connections have states other than

nonexistent and established, and some
are unique to one or the other connection.
This setup is so confusing, I made a state
transition diagram. Figure 2 combines the
behavior of both types of connections,
using colors to tell them apart.

When the master allocates the Explicit
connection, the connection simply transi-
tions to the established state and it�s ready
to use. The connection timer starts at 10 s.

If it times out, the connection goes to
one of two possible states depending on
whether the connection is in autodelete or
deferred-delete mode. In autodelete mode,
if it times out, it�s gone. In deferred-delete
mode, it stays around and goes back to
the established state if a message comes in.

The I/O connection, when allocated,
goes to the configuring state. In this state,
it cannot process I/O messages and must
wait for the master to set its expected
packet rate via the Explicit connection.

Then it is in the established state and can
begin handling I/O Poll requests.

TIMERS
For each connection, you need a time-

out timer. You also need a timer for
sending fragments. The BIOS clock is
handy, but who wants to deal with 18.2 Hz?

With the Micro/sys board, the 25-MHz
system clock is divided by 21 to drive
timer 0 in the �386EX. Timer 0 further
divides by 65,536, producing 18.2 Hz.
Loading 0xE884 into the timer 0 count
register resulted in BIOS clock interrupts
at a more friendly rate of 20.0 Hz.

The connection time-out time depends
on the expected packet rate, which is set
by the master. When a DeviceNet mes-
sage comes in, I reload the timer for that
connection, and my timer interrupt han-
dler then decrements it at a 20.0-Hz rate.
If it reaches zero before another message
comes in, the connection times out.

ANALOG INPUT POINT
The Analog Input Point in the DeviceNet

#define CAN_BASE 0xA000
UCHAR global_CAN_buf[10];
UINT global_event;

// Handles receipt of incoming DeviceNet messages
// The three dots are required in C++ mode
void interrupt far can_isr(...)
{

UCHAR i, int_source, addr, mailbox, length;

int_source = peekb(CAN_BASE, 0x5F); // read interrupt source
if ((int_source < 3) || (int_source > 7)) return;

mailbox = int_source - 2;
for (i=0; i < 10; i++) global_CAN_buf[i] = 0;

// compute address of config register in mailbox of interest
addr = 6 + (mailbox << 4); // multiply by 16
length = peekb(CAN_BASE, addr); // read message length
length = length >> 4;
global_CAN_buf[9] = length; // save message length
for (i=0; i < length; i++){ // move message from 82527
 addr++;
 global_CAN_buf[i] = peekb(CAN_BASE, addr);
}
addr = 1 + (mailbox << 4); // point to control 1 reg.
pokeb(CAN_BASE, addr, 0x55); // clear INT_PENDING bit
addr--; // point to control 0 reg.
pokeb(CAN_BASE, addr, 0xFD); // clear NEWDAT
global_event |= 0x0001 << mailbox; // set bit in global_event
outp(0x20,0x20); // nonspecific EOI

}

Listing 1�The interrupt handler for DeviceNet messages copies the message from the
82527 into a buffer, saves the length, and frees the 82527 for the next message. The run
time is 100 µs.

 OCTOBER 1998 EMBEDDEDPC 51

object library models an analog sensor.
Listing 2 shows some code for this class.

 The specification defines eight at-
tributes, many of which are optional. I
implemented the ones for sensor value,
sensor status, and data type. The data
type tells the master whether the value is
an integer, float, or what. For the weather
station, I use an unsigned char that corre-
sponds to a data type of 2.

My Analog Input Point class imple-
ments the DeviceNet Get Attribute Single
service using a member function. Thus, the
master can read any of the three attributes
using an Explicit message.

These attributes aren�t settable, so my
class doesn�t have the Set Attribute Single
service. In the future, I may allow the
master to set the data type to a float,
switching my sensor value to floating point.

IDENTITY OBJECT
Every device must be able to give its

name, rank, and serial number. The Identity
object holds this information. It also keeps
track of device state and does device resets.

There are two types of resets. Type
zero simulates an off/on power cycle. To
do this, I send a response back to the
master and suspend writes to my watch-
dog timer.

A type-one reset changes settable con-
figuration parameters back to their fac-
tory default values and does a type-zero
reset. The weather station has no configur-
able settings, so both resets are identical.

FRAGMENTED MESSAGES
The weather station�s I/O Poll response

is just three bytes�one byte each for
device status, temperature, and humidity.

If I used floating point or added more
sensors, the CAN message limit of 8 bytes
would quickly be exceeded. I�d need to
send the data in two or more fragments.

I/O message fragments are like nor-

DeviceNet
Object

Link
Consumer

Link
Producer

Link
Consumer

Link
Producer

Dup MAC
Handler

Startup
Dup MAC
Sender

Message
Router

Temperature
Sensor

Assembly
Object

DeviceNet Connections

Unconnected Port

Explicit Request

Explicit Response

I/O Poll Request

I/O Poll Response

Dup MAC Check
(bidirectional)

Receives dup MAC check
messages from other devices
and sends response

Sends two dup MAC check
messages at startup

Discard if bad
message or connection
not established

I/O Poll
Connection
Object

Holds copies of
device status,
temperature, and
humidity

To other objects

Explicit
Connection
Object

Ack Discard if bad
message or
connection
not established

Figure 1�An Explicit message can
address any object in the system,
while the I/O Poll message re-
turns a specific set of data.

mal messages except the first byte pro-
vides a fragment flag and a fragment
count. That leaves seven bytes for data.

For maximum speed, I/O message
fragments are sent back-to-back with no
acknowledge (ack) message from the mas-
ter other than the CAN level acknowl-
edge bit.
Fragmenting an Explicit message is more
complex. You send a fragment, wait for
an ack message, and send the next frag-
ment. If the ack takes too long, resend the
fragment. If you time out again, give up
trying to send the message.

Many error cases can arise, like get-
ting an ack from the master with a frag-
ment number different from what you sent,
getting a message that�s not an ack while
you�re sending fragments, and so on.

The weather station is capable of send-
ing and receiving fragmented Explicit
messages. Its serial number and product
name are long enough to require it.

Fragmented messages are a big part
of DeviceNet conformance testing. My
program managed to pass a self-inflicted
test using the ODVA conformance soft-
ware. This software generates every con-
ceivable bogus response and breaks all
but the best code. You like challenges, right?
GETTING PHYSICAL

DeviceNet requires you to keep the
network data and power isolated from
green-wire ground by 1 MΩ or greater. If
anything can reference your circuit to
green-wire ground (e.g., an RS-232 port),
you must optoisolate the network.

My PC/104 DeviceNet interface is
shown in Figure 3. The weather station is
isolated from ground and has no ports
other than DeviceNet, so I didn�t need
optoisolators.

Power consumption is 5 W, so I pow-
ered the whole thing from DeviceNet
power. The voltage varies between 11
and 25 VDC, so use a wide input-range
DC-to-DC converter.

DeviceNet also needs a miswiring-
protection circuit, which lets you mix up
the network connections in any possible
way without frying your device or the
network. The DeviceNet specification in-
cludes a circuit for this. The Philips 82C251
CAN transceiver has ESD protection and
line protection up to 40 V continuous.

DeviceNet is fairly specific in its interface
guidelines. I used two BCD rotary switches
to set MAC ID and one more for data rate.

E
P
C

CIRCUIT CELLAR INK OCTOBER 1998 www.circuitcellar.com52

I also went
with the rec-

ommended bi-
color LED for

module and network
status.
Of the three network-con-

nector choices, I used the circu-
lar micro style. It has five
pins�two for differential data,
two for power, and one for the
drain wire.

The data lines are refer-
enced to power V�, so your
CAN transceiver must also be
referenced to this to prevent
exceeding its common-mode
voltage range.

APPLYING DeviceNet
In addition to all of the objects for

DeviceNet, you need code for your appli-
cation. The weather station is simple
enough that I just extended the Analog

Input Point object. It reads the ADC and
computes sensor values.

If you have separate application ob-
jects, you must link them with the Identity
object. It keeps track of device status and

Nonexistent

EstablishedDeferred Timedout

Configuring

Startup Delete from any state

Receives Allocate
I/O Poll request

Get/Set
attribute

Receives Allocate
I/O Poll Request

Get/Set
attribute

Get/Set
attribute

Send/Receive
data

I/O Poll
times out

Explicit
times out
(autodelete mode)

Receives
Set EPR
request

Receives
Allocate
Explicit
request

Explicit
times out
(deferred mode)

Receives
data

I/O Poll
times out or
is deleted

Figure 2�This state transition diagram for connection objects shows the events
that cause the connection object to change state. Explicit connection states and
events are shown in green, I/O Poll in red, and shared in violet.

Figure 3�A simple eight-bit interface puts the Intel 82527 CAN controller on the PC/104 bus. The 24-V DeviceNet power is dropped to 5 V by U3
and then powers the entire weather station. Transistor Q1 protects against miswired network power. The PAL source code is available via the Circuit
Cellar web site.

does resets. A standard
object used for SEMI-com-
pliant devices, the S-De-
vice Supervisor, is
designed to do this.

This article is mainly
about DeviceNet, but the
weather station�s details
are on the Circuit Cellar
web site. I hope to add
sensors for barometric pres-
sure and wind speed and
build units for other loca-
tions.

My network master is a
�486 with a DeviceNet
card from Softing GmbH.
It comes with a library that
makes it easy to use. Also

check out National Instruments� card which
works with LabVIEW and CVI.

Aside from being a fun combination of
real-time software and hardware, this
project shows how straightforward it is to

E
P
C

 OCTOBER 1998 EMBEDDEDPC 53

SOURCES
DeviceNet Information
Open DeviceNet Vendor Assn., Inc.
(954) 340-5412
Fax: (954) 340-5413
www.odva.org

SBC1386
Micro/sys, Inc.
(818) 244-4600
Fax: (818) 244-4246
www.embeddedsys.com

Digi-Key
(218) 681-6674

class ANALOG_INPUT_POINT{
private:
UCHAR value; // sensor value
UCHAR data_type; // data type of value
BOOL status; // alarm status
static UINT class_revision; // revision of object
public:
static void handle_class_inquiry(UCHAR*, UCHAR*);
void handle_explicit(UCHAR*, UCHAR*);
ANALOG_INPUT_POINT() {value = 0; status = 0; data_type = 2;}

};

// Handle explicit request to Analog Input Point
void ANALOG_INPUT_POINT::handle_explicit(UCHAR request[],
 UCHAR response[])
{
UINT service, attrib, error;
service = request[1]; attrib = request[4]; error = 0;
memset(response, 0, BUFSIZE); // clear response buffer
switch(service){
case GET_REQUEST:
switch(attrib){ // return requested attribute
case 3: // value
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = value;
response[LENGTH] = 3;
break;

case 4: // status
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = (UCHAR)status;
response[LENGTH] = 3;
break;

case 8: // data type
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = data_type;
response[LENGTH] = 3;
break;
default: error = ATTRIB_NOT_SUPPORTED; break;

}
break;
default: error = SERVICE_NOT_SUPPORTED; break;

}
if (error) // return error response{
response[0] = request[0] & NON_FRAGMENTED;
response[1] = ERROR_RESPONSE;
response[2] = error;
response[3] = NO_ADDITIONAL_CODE;
response[LENGTH] = 4;

}
}

Listing 2�Here�s the Analog Input Point class for the temperature and humidity sensors. The
Explicit message handler allows the master to get any of the three attributes. They are read-
only, so the Set Attribute service is not supported.

SOFTWARE
Complete source code and schematics for this article
are available via the Circuit Cellar

Jim Brady has designed embedded sys-
tems for 15 years. You may reach him at
jimbrady@ix.netcom.com.

Fax: (218) 681-3380
www.digikey.com

DeviceNet cards
National Instruments, Inc.
(512) 794-0100
Fax: (512) 794-8411
www.natinst.com

Softing GmbH
ICT, Inc.
(978) 557-5882
Fax: (987) 557-5884
www.softing.com

program a DeviceNet interface in C++. With
a little care, C++ can provide good response
times and reasonable program size. EPC

©Circuit Cellar INK, the Computer Applications Journal.
Reprinted by permission. For subscription information,
call (860) 875-2199 or subscribe ©circellar.com

