
CIRCUIT CELLAR INK AUGUST 199838

Jim Brady

Networking with DeviceNet
Part 1: How DeviceNet Stacks Up

Reading articles on networks raises a
lot of questions�like whether to call Device-
Net a network, a bus, a fieldbus, or what?

The term �bus� is used for industrial
networks that control things, as opposed to
general office networks that move data. I
decided to forget about impressive terms
and stick to basics. I want to cover the meat
and potatoes of what a developer needs to
know to implement a Device-
Net network.

Why are there so many
network protocols? Figure 1
shows 15 of them. Why not
just use Ethernet?

In the beginning, I didn�t ask.
I developed DeviceNet interfaces
because customers requested
them. Then Profibus, then others.
However, with time, I won-
dered: is there an ideal net-
work for a given application?

This month, I show how
DeviceNet compares to other
device networks and explain

how it works. In Part 2, I�ll look at a real
DeviceNet device, code and all.

Better dust off your C++ books because
DeviceNet is object oriented all the way.
C works, but C++ fits like a glove.

SORTING THEM OUT
Where does DeviceNet fit into the

network menagerie? At first glance, all the

networks look quite similar. However, each
one has a unique set of features and is
designed to move a specific type of data
between certain kinds of equipment.

Here, �device� refers to small to mid-size
equipment with multiple integrated sensors
and/or actuators. Device networks are
designed to interconnect these devices.

As devices get smarter and processing
power cheaper, even simple
devices may have high-level
network ports, producing a
consolidation toward the high
end of Figure 1. But there will
always be a need for more
than one level of network. Plant
engineers don�t want to share
their Ethernet office network
with assembly robots!

NEW BREED
DeviceNet represents a

new breed of device networks
that offer nifty features, such as
hot-plug capability, network-

With all the debate on networks these days, it�s easy to get confused about
the differences between networks, buses, and field buses, particularly when
a new technology comes along. Join Jim for the lowdown on DeviceNet.

Figure 1�Automation networks at the low end move on/off messages
between simple sensors and actuators. At the high end, complex equipment
transfers large blocks of data plant wide. DeviceNet handles the middle
ground.

Plant

Line

Cell

Peer

Smart
Device

Block I/O

Discrete I/O

E
th

er
ne

t

Fo
un

da
tio

n
Fi

el
db

us

W
or

ld
 F

IP

Lo
nW

or
ks

M
od

bu
s

P
lu

s

C
on

tro
lN

et

P
ro

fib
us

 F
M

S

D
ev

ic
eN

et

S
D

S

P
ro

fib
us

 D
P

C
A

N
op

en

In
te

rb
us

S
er

ip
le

x

Se
rc

os

A
S

I

Sensor
Networks

Device Networks Control Networks Field
Networks

D
ev

ic
e

C
om

pl
ex

ity

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

E
P
C

 SEPTEMBER 1998 EMBEDDEDPC 39

tion for reliable real-time
communication. At least five
IC vendors make CAN control-
lers that handle all the details of
the CAN protocol for you.

What makes CAN so good for real-
time messaging? Short message length
and priority-based collision resolution.

The latter feature is a major reason for
CAN�s popularity. If a collision occurs, the
higher priority message still gets through
intact! In fact, the lower priority colliding
node ends up receiving the higher priority
colliding node�s message.

With most other protocols, if a collision
occurs, no data gets through, and this can
happen over and over. Not cool for a
message to an automobile brake!

CAN requires nodes to listen before
sending. If two or more nodes decide to
send at the same time, it�s the same time to
within a small fraction of a bit time. That
means the messages line up bit-for-bit.

Because the network line is essentially
wire-ORed (see Figure 3), a low bit over-
rides a high bit. Nodes listen to what they
send, and the node sending the high bit
will realize that it�s receiving a low bit.

At that instant, it knows there is a
collision and switches from sending to
receiving. The most significant bit of the
Connection ID is sent first, so the message
with the lower-numbered ID wins the bit-
wise arbitration and gets through intact.

For this to work, nodes at opposite ends
of the cable must have their bits line up to
within about half a bit-time. Thus, the
round-trip delay of the cable is limited to
1.0 µs at the maximum DeviceNet speed
of 500 kbps. The corresponding cable

Figure 2�The new producer-consumer model
identifies the data rather than the source and
destination.

powered devices, peer-to-peer, fiber optics,
and fault containment. And if you do it
right, your device will be interchangeable
with your competitor�s. This may not seem
good to you, but your users will like it.

Most device networks, including Device-
Net, are deterministic. In this context,
�deterministic� simply means that the net-
work can guarantee a drop-dead maxi-
mum delivery time for a critical message.
Many peer-to-peer networks can�t claim
this because of the possibility of multiple,
destructive collisions.

Ethernet using standard hubs, for ex-
ample, is collision-based and therefore not
deterministic. But it can be made so,
thereby becoming a contender for real-
time control automation.

If you have a fast processor, combined
with Java, and perhaps Windows CE,
most of the network code is done for you.
I�m more of an 8-bit man myself, but with
�386EXs at $16, it�s worth considering.

Most new networks, again including
DeviceNet, use a producer-consumer (also
called data-centric) model as opposed to
the older source-destination model. The
data is considered central to the message
and is what is identified, rather than the
source and destination.

This situation increases the effective
bandwidth of the network by permitting
one-to-many broadcast messaging and
time synchronization. Figure 2 illustrates
the difference between the two message
models.

MOTIVATION
Automation-equipment designers are

eliminating old-style point-to-point wiring.
They want devices from various suppliers to
coexist on the same network. Ultimately,
they want interchangeability between same-
type devices made by different suppliers.

They�re also asking suppliers to make
their devices smarter, with better diagnos-
tics. Idiot lights are no longer enough.
Diagnostic sensors should provide both
alarm and warning levels.

The hope is that the device warns of
abnormal levels before it�s too late. If a
device does fail, it can easily be swapped
out for another, possibly one from a different
manufacturer, without powering down the
network. When the new device comes up
on the network, it tells you what it is, what
it can do, and lets you know if it�s OK.

Table 1 compares features of some
popular device networks. At this level of
comparison, many differences emerge.
CAN-based networks have limited range
because they are sensitive to time delay on
the line. Most other networks use repeaters
to extend their range.

With a 500-m range and a 64-node
limit, you wouldn�t use DeviceNet to network
a large hotel. But, it is an excellent fit in a
wide range of applications. The CAN
protocol that DeviceNet was built on was
originally designed by Bosch for use in autos
and trucks. This harsh environment isn�t so
different from semiconductor fab tools and
other automation equipment.

With a short message length, DeviceNet
is well suited for time-sensitive messaging.
At 500 kbps, a node doesn�t have to wait
more than 0.26 ms to send.

CAN
There is much literature on CAN [1],

including articles by Brad Hunting (�The
Solution�s in the CAN,� INK 58) and
Willard Dickerson (�Vehicular Control Mul-
tiplexing with CAN and J1850,� INK 69).
Here, I�m only going to cover the most
important points.

Network protocols such as DeviceNet,
SDS, and CANopen�all built on top of
CAN�inherit a well-established founda-

Source-destination model:

Producer-consumer model:

identifier

source destination data crc

data crc

Table 1�Repeaters are required for Profibus and LonWorks to achieve this range and node
count. DeviceNet and SDS are two popular CAN-based networks. Others exist, too, such as
CANopen and CAN Kingdom. Profibus is a master-slave protocol that is popular in Europe and
gaining support in the U.S. LonWorks, widely used in building automation, is now seeing use
in the equipment automation field.

DeviceNet SDS Profibus DP LonWorks

Max. range 500 m at 500 m at 9600 m at 2700 m at
125 kbps 125 kbps 94 kbps 78 kbps

Max. speed 500 kbps 1 MBps 12 MBps 1.25 MBps
Max. nodes 64 128 126 32,385
Max. message length 8 bytes 8 bytes 244 bytes 228 bytes
Bus access Peer, M/S Peer, M/S M/S Peer, M/S
Error resistance 15-bit CRC 15-bit CRC 16-bit CRC 16-bit CRC
Deterministic yes yes yes in M/S mode
Hot-plug capability yes yes yes yes
Fault confinement yes yes yes yes
Line-powered devices 24 VDC, 8 A yes optional optional
Media twisted pair twisted pair twisted pair, twisted pair, fiber,

fiber, RF RF, power line

E
P
C

40 CIRCUIT CELLAR INK OCTOBER 1998 www.circuitcellar.com

length can be deter-
mined by:

0.5 (1.0 µs × 300 m/µs × 0.72) = 108 m

where 300 m/µs is velocity of light
and 0.72 is the velocity constant of the

DeviceNet cable. That�s why you have the
100-m limit on cable length at 500 kbps.

MESSAGE RELIABILITY
The CAN controller calculates a 15-bit

CRC value for the received data and
compares it against the CRC it received. If
an error is detected, the node originating
the message is notified so it can resend the
message.

If the originating node sends too many
messages for which it gets an error back,
it goes offline. That way, a bad device
won�t crash the entire network.

Your CPU detects this event by reading
the CAN chip�s status register. You have
the option of staying offline or initiating an
error-recovery sequence.

If the CAN controller originating a
message doesn�t hear back from at least
one other device that the message was
correctly received, it will resend. Thus, a
lonely node will just sit there and send over
and over.

When you do get a message from your
CAN controller, you know it�s correct.
And when you tell the CAN controller to
send a message, it keeps trying until the
message gets through. Pretty good, con-
sidering all this is handled by one $8 chip.

To make CAN into a usable network,
you need a way to string messages to-
gether, establish connections, and handle
errors. That�s where DeviceNet comes in.

DeviceNet CONNECTIONS
DeviceNet provides a structure for es-

tablishing logical connections between

devices, releasing connections if they go
unused for too long, and stringing messages
together if you need more than 8 bytes. It
also provides an object-oriented frame-
work to tell you how to structure your
network code.

If your device-type is in the DeviceNet
library, it even tells you how your device
should behave. That part is necessary to
make devices completely interchangeable.

Central to DeviceNet is a concept called
a connection. Think of it as a telephone
connection. When you call someone, you
establish a connection. That connection is
yours, and other people talking on the
same fiber have different connections. The
connection breaks when you hang up or in
some cases if you stop talking for a while.

In DeviceNet, each connection is identified
by an 11-bit number called a message identi-
fier or connection ID. This number includes
your device�s Media Access Control Identifier
(MAC ID), which is a number from 0 to 63,
usually set by a switch on your device.

DeviceNet provides a set of 11 pre-
defined connections, called the predefined
master/slave connection set (see Table 2).
Wait a minute�master/slave?

Yes, that�s a letdown after expecting
peer-to-peer, but most DeviceNet products
on the market today are slave-only de-
vices. The implementation is much simpler
and less memory consuming.

A peer device must include a lot of
code to dynamically establish and con-
figure connections. If you really want to
include peer capability, the standard

enables you to put it in a device along with
the predefined connection set.

In fact, the DeviceNet standard distin-
guishes between a slave device that also
has peer capability, and a slave-only
device. In this article, I�m sticking to the
simpler slave-only device, which uses only
predefined connections.

DeviceNet MESSAGES
DeviceNet has two basic message

types: explicit and I/O. The predefined
connection set includes one explicit con-
nection as well as four I/O connections of
different kinds.

Explicit messages include the path to
locate the data of interest. This consists of
the class ID, instance number, and at-
tribute ID. They also specify an action to be
taken (e.g., set or get). Finally, they in-
clude the master�s MAC ID because a
slave must respond only to its master.

With of all this baggage, explicit mes-
sages aren�t efficient. They are used mainly
for initial configuration, although in theory
they could be used for everything. Your
device must support this connection, but
others are optional.

In an I/O poll connection, the master
periodically sends a request saying in
effect, �Hey! Send me your data.� It is an
efficient exchange because the master
doesn�t need to send any baggage.

When the slave device sees a message
with this connection ID, it returns a prear-
ranged set of data. On more complex
devices, the master can usually select from
various data sets. If only one I/O connection
is supported, it�s usually this one because
it is general purpose.

In an I/O change-of-state (COS) con-
nection, the device sends its data when it
changes more than a selected amount. This
choice is good for slowly changing data.

The I/O cyclic connection uses the
same connection ID as the COS connec-

From CAN
controller
(inverted)

V-

DeviceNet
twisted pair line120 Ω

From CAN
controller

V+

DeviceNet
twisted pair line 120 Ω

Figure 3�A DeviceNet line with a one-line
driver uses a low output from the CAN
controller to turn both transistors on while a
high output turns both off. It works like a
wire-OR, where any low output dominates
all other nodes� high outputs.

 Connection ID Bits Description
10 9 8 7 6 5 4 3 2 1 0
 Message

 ID Slave’s MAC ID Group 1 Message

0 1 1 0 1 Slave’s I/O Change-of-State/Cyclic Message
0 1 1 1 0 Slave’s I/O Bit-Strobe Response
0 1 1 1 1 Slave’s I/O Poll Response

Slave’s MAC ID

 Message
 ID Group 2 Message

1 0 0 0 0 Master’s I/O Bit-Strobe Request
1 0 0 0 1 Reserved
1 0 0 1 0 Master’s Change-of-State/Cyclic Ack.
1 0 0 1 1 Slave’s Explicit Response
1 0 1 0 0 Master’s Explicit Request
1 0 1 0 1 Master’s I/O Poll Request
1 0 1 1 0 Unconnected Port
1 0 1 1 1 Duplicate MAC ID Check

Table 2�These 11 connections
come from two DeviceNet mes-
sage groups, with the Connec-
tion ID made up differently in
each case. Group 1 messages
are higher priority, used for the
slave�s I/O messages. All mes-
sages originate from the mas-
ter, except for the Duplicate
MAC ID Check and the slave�s
COS/cyclic message.

E
P
C

 SEPTEMBER 1998 EMBEDDEDPC 41

second byte specifies the fragment type
(first, middle, last) and the fragment count.
The fragment count is only a six-bit value
but can roll over any number of times,
allowing for messages of unlimited length.

For an I/O-message fragment, only
one byte is used for fragment information
(the one specifying fragment type and
count) to maximize the space for actual
data. In this case, the fragment flag is
implied if the produced connection size is
greater than 8.

For explicit or I/O fragments, the receiver
simply concatenates the data obtained
from each fragment, stopping when it sees
the flag indicating the final fragment.

With fragmented messages there is the
question of whether the receiving device
needs to send an acknowledge for each
fragment received. It does for an explicit
message but not for an I/O message. I/O
message fragments are sent back-to-back
for maximum speed.

SOME REAL MESSAGES
Figure 4 shows some real DeviceNet

messages based on a typical out-of-the-
box slave MAC ID of 63 and a master ID
of 1. This situation is typical because it gives
the slave device the lowest priority and the
master the highest.

For clarity, Figure 4 shows only the connec-
tion ID and data fields of the CAN message
frame. There are two additional fields.
One is a length field that tells the receiver
how many bytes of data to expect.

The other field is used for acknowledg-
ment. The node receiving the message
sends an ack bit if the message was OK.

CAN messages are variable length.

tion. The master chooses be-
tween the two when it allo-
cates the connection. With
the cyclic connection, the de-
vice sends its data at a se-
lected rate. This choice
works well for rapidly chang-
ing data.

In an I/O bit-strobe connection, the device
sends only a few bits of data in response
to the master�s bit-strobe request. This is a
good choice for simple on/off sensors.

With DeviceNet, no connections exist
until they are allocated. How do you
allocate a connection in the first place? I
think the designers of DeviceNet must
have struggled with this.

It turns out that a special connection
always exists�the unconnected port. The
master sends an allocate message to the
unconnected port to allocate connections
and specify which of the predefined connec-
tion set it wants to use. Once you have connec-
tions, you can send messages over them.

Many CAN controllers have individual
mailboxes for incoming messages. You
can assign each connection ID to a differ-
ent mailbox. The Intel and Siemens chips
have 15 and 16 mailboxes, respectively,
enough for the predefined connection set
with room to spare.

This makes your program modular from
the start. Different messages come in dif-
ferent boxes.

STRINGING MESSAGES TOGETHER
An explicit message from the master uses

five bytes of the eight bytes available for
the path, service, and master MAC ID. This
leaves only three bytes for actual data.

If the master sends a four-byte long int,
two separate messages are needed. These
messages are called fragments and are just
like a regular message, except the first part of
the data field contains fragment information.

For an explicit-message fragment, the
first byte contains a fragment flag, and the

Figure 4�These are messages
you see on a DeviceNet ana-
lyzer during a typical start-up
sequence. The Connection IDs
are based on a slave MAC ID
of 03Fh. Note the variable-
length data field. All message
values are in hex, and the
least significant bit is always
sent first.

Depending on the number of data bytes
sent, a frame can range from 44 to 108 bits.

The first message your device deals
with is a duplicate MAC ID check mes-
sage. Before going online, your device
must make sure it has a unique MAC ID.

To do this, your device broadcasts two
duplicate MAC ID check messages, 1 s
apart, addressed to its own MAC ID. All
devices receive this message, but none
respond unless your device addresses them!

After sending the duplicate MAC ID
check message twice and hearing no
response, you can go online.

But since you have no connections yet,
you must ignore all messages with two
exceptions�a message to your uncon-
nected port to allocate connections, or a
duplicate MAC ID check message that
contains your MAC ID.

Duplicate MAC ID check messages
would be from another device hoping to
go online but set to the same ID as yours.
Your response to this message prevents the
offending device from going online.

When you get a message to your
unconnected port it will be the master
specifying which connections out of the
predefined connection set it wants to allo-
cate. The allocation choice byte contained
in this message will have bits set which
correspond to the connections it wants.

If you support these connections, allo-
cate them and return a success response.
Otherwise return an error and don�t allo-
cate any connections.

Keep track of the master MAC ID that
allocated these connections, because from
now on this is your master. A message
containing a different master MAC ID is

Slave’s success response to master’s allocate request

 5FB 01 CB 00

5FB = Connection ID for slave’s explicit response
01 = Echo master’s MAC ID
CB = Service code OR’d with response flag
00 = Wants 8-bit message format

Master’s explicit request to set packet rate of
Explicit connection to 500 ms

 5FC 01 10 05 01 09 F4 01

5FC = Connection ID for master’s explicit request
01 = Master’s MAC ID
10 = Service code for “Set Attribute”
05 = Class ID of connection class
01 = Instance ID (explicit connection)
09 = Attribute ID of packet rate
F4 = Desired packet rate LSB
01 = Desired packet rate MSB

Slave’s duplicate MAC ID check message.
Vendor ID is 0851h, Serial No. is 01020304h

 5FF 00 51 08 04 03 02 01

5FF = Connection ID for dup. MAC check
00 = Device’s physical port number
51 = Vendor ID LSB
08 = Vendor ID MSB
04 = Device’s serial number LSB
03 = Device’s serial number
02 = Device’s serial number
01 = Device’s serial number MSB

Master’s allocate connections message to
allocate the explicit and poll I/O connections

 5FE 01 4B 03 01 03 01

5FE = Connection ID for unconnected port
01 = Master’s MAC ID
4B = Service code for “Allocate”
03 = Class ID of DeviceNet class
01 = Instance ID
03 = Allocation choice (explicit and I/O poll)
01 = Allocator’s MAC ID

Slave’s success response to master’s request to
 set packet rate. Actual packet rate was set to 512 ms

 5FB 01 90 00 02

5FB = Connection ID for slave’s explicit response
01 = Master’s MAC ID
90 = Service code OR’d with response flag
00 = Packet rate actually set LSB
02 = Packet rate actually set MSB

Master’s I/O poll request

 5FD

5FD = Connection ID for master’s I/O poll request
The data field is empty!

Slave’s I/O poll response

 3FF 00 20 0F

3FF = Connection ID for slave’s I/O poll response
00 = Slave’s error status (OK)
20 = Temperature of 32˚F
0F = Humidity of 15%

E
P
C

42 CIRCUIT CELLAR INK OCTOBER 1998 www.circuitcellar.com

Analog Input Point Class

Assembly Object

Identify Object

DeviceNet Object
I/O Poll

Connection
Object

Explicit
Connection

Object

Connection Class

Humidity
Sensor
Object

Temperature
Sensor
Object

Assembles data from the
sensors to send in the

I/O Poll Response.

These objects model actual sensors in the device.
They are instances of the Analog Input Point Class.

Contains the device’s identity—
model number, serial number,

manufacturer name, etc.

Routes
Explicit

messages
to the

specified
object.

Allocates and releases
connections, contains

configuration values like
baud rate and MAC ID.

Unconnected
Port

DeviceNet Network

These objects consume
and produce messages, and

handle fragmentation. There is
one object per connection

supported. The Explicit
Connection is always instance

1 of the Connection Class.
The I/O Poll Connection

is instance 2.

Message Router
Object

SOURCES
DeviceNet Information
Open DeviceNet Vendor Assn., Inc.
(954) 340-5412
Fax: (954) 340-5413
www.odva.org

DeviceNet Conformance Testing
University of Michigan
(734) 764-4336
Fax: (734) 936-0347
www.eecs.umich.edu/~sbus

DeviceNet Interface Cards
Huron Networks, Inc.
(313) 995-2637
Fax: (313) 995-2876
www.huronnet.com

National Instruments, Inc.
(512) 794-0100
Fax: (512) 794-8411
www.natinst.com

Softing GmbH
ICT, Inc.
(978) 557-5882
Fax: (987) 557-5884
www.softing.com

SST, Inc.
(519) 725-5136
Fax: (519) 725-1515
www.sstech.on.ca

Jim Brady has designed embedded sys-
tems for 15 years. You may reach him at
EbaraJim@aol.com.

ignored.
For each connection al-

located, start a timer that
deletes the connection if it times

out. For the explicit connection, the
timer defaults to 10 s. For the I/O poll

connection, it defaults to zero and must be
set by the master before the connection is
used.

The time-out value is controlled by an
attribute called the expected packet rate
(EPR), which the master can set. Your time-
out value, in milliseconds, equals the EPR
× 4. Thus, the EPR for the explicit connec-
tion defaults to 2500.

In the I/O message example shown in
Figure 4, note that no data, path, or
service code is sent with the master�s
request. The data set returned with the
slave�s response is already specified in the
manufacturer�s device profile or electronic
datasheet.

More complex devices may have many
sets of data the master can choose from.
The Master selects the set it wants by
changing the slave�s produced connection
path.

Because no baggage is involved in the
I/O message, it�s an efficient process. A
device such as the one modeled in Figure
5 can send its entire sensor and status data
in one I/O message. With explicit mes-
saging, many full-length messages would
be needed.

OBJECT LIBRARY
With DeviceNet, a device is modeled

as a collection of objects. Each object has
attributes and behaviors, and can be
implemented directly as a C++ class.
Figure 5 shows the object model for a
DeviceNet device with two analog sensors.

Each class has a class ID, objects have
an instance ID, and attributes have an
attribute ID. By specifying these three ID
numbers, any attribute in the device can
be addressed.

The DeviceNet Object Library is con-
tained in Volume II of the standard. In
addition to network-related objects, it in-
cludes about 25 objects that model real-
world switches, sensors, actuators, PID
loops, position sensors, and controllers.
There are more on the way, including an
Analog Sensor Object that models ad-
vanced sensors, with capabilities such as
calibration, auto-zero, offset, gain, and
setpoints.

CONFORMANCE TESTING
When you complete your DeviceNet

product, how do you know it meets the
standard? The University of Michigan will
test your product to see if it conforms to the
rigors of the DeviceNet protocol.

If this sounds too intimidating, you can
avoid embarrassment by getting the soft-
ware and a DeviceNet interface card so
you can test it yourself. When you do go
to the test lab, bring your laptop and

Figure 5�Here�s the Object Model for a DeviceNet device with two analog sensors. These objects
can be implemented as instances of C++ classes, based on the detailed models provided in the
DeviceNet Object Library.

REFERENCE
[1] J. Schill, �An Overview of the CAN Protocol,�

Embedded Systems Programming, p. 46, Sept 1997.

compiler along. The process is designed
to be a fix-it-as-you-go experience.

DeviceNet STANDARDS
The DeviceNet standard keeper is the

Open DeviceNet Vendor Association
(ODVA). It manages the evolving stan-
dard and assists vendors in developing
their products and the Device Profiles for
them. Within the association are 14 active
special-interest groups, organized along
product lines. The ODVA Web site lists
these groups.

You can get your feet wet by getting a
DeviceNet catalog at no charge from
ODVA. The first chapter has an excellent
overview of CAN and DeviceNet. If you
decide to jump in, you can purchase the
full DeviceNet specification (the CD ver-
sion includes a good search engine) from
ODVA. Later you can become a member,
join a SIG, and play a part in defining
network standards for your industry.

Next month, I�ll turn some DeviceNet
objects into C++ classes, embed them in a
�386EX, and hang a DeviceNet interface
on it. EPC

©Circuit Cellar INK, the Computer Applications Journal.
Reprinted by permission. For subscription information,
call (860) 875-2199 or subscribe ©circellar.com

